٠

SYNTHESES AND THERMAL REACTIONS OF 2-ALKYL(OR ARYL)-1-BENZOYL-3,4-DIHYDRO-2-THIANAPHTHALENES

Mikio Hori^{*}, Tadashi Kataoka, Hiroshi Shimizu, and Akihiko Tomoto Gifu College of Pharmacy, 6-1, Mitahora-higashi 5-chome, Gifu 502, Japan

Summary: 1-Benzoy1-2-methy1-3,4-dihydro-2-thianaphthalene (4a) underwent novel intermolecular 1,4-rearrangement in refluxing toluene to give an enol ether 5a, while rearrangement of 2-phenyl derivative 4e proceeded intramolecularly in refluxing xylene to afford a 1,4-rearranged enol ether 5b. On the other hand, ylides 4a-e were refluxed in alcohols to afford some ring-opened products 10-12.

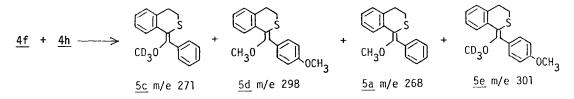
A large number of benzoyl-stabilized sulfur ylides have been synthesized and their reactivities have been investigated in past two decades. Thermal [2,3]sigmatropic rearrangement¹ and Stevens-type 1,2-rearrangement² of these ylides are well-known, however despite the facile enolization of the carbonyl group,^{3,4} the 1,4-rearrangement of S-substituent to the carbonyl oxygen atom has not been found. In this communication, we wish to report the syntheses of new benzoyl-stabilized cyclic sulfur ylides and their thermal reactions, especially a novel 1,4-rearrangement and ring-opening reactions.

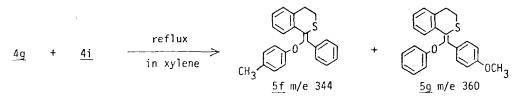
Syntheses of 2-Alkyl(or Aryl)-1-benzoyl-3,4-dihydro-2-thianaphthalenes

Phenacyl phenethyl sulfoxide (<u>la</u>) was cyclized with trifluoroacetic anhydride in methylene chloride to give 1-benzoyl-2-thiochroman (<u>2a</u>).⁵) The Pummerer cyclization proceeded readily in comparison with that of methylsulfinylmethyl phenethyl ketone reported by Yonemitsu et al.⁶) and is very useful for the synthesis of sulfur heterocycles. Treatment with alkyl halides-silver perchlorate or diphenyliodonium tetrafluoroborate⁷) led <u>2a</u> and <u>2b</u> to the sulfonium salts <u>3a-i</u>. The compounds <u>3a-i</u> were deprotonated with triethylamine to give the corresponding ylides 4a-i.⁸)

	~~	Compd. <u>3</u> , <u>4</u>	R	R-	Compd. <u>3, 4</u>	R	R1
Et ₃ N	S ¹ + CO	<u>a</u>	CH3	Н	<u>f</u>	CD3	Н
		<u>b</u>	с ₂ н ₅	н	a	p-CH ₃ C ₆ H ₄	Н
	C ₆ H ₄ R´−p	<u>c</u>	n-C3H7	Н	<u>h</u>	CH3	осн _з
		<u>d</u>	i-C3H7	н	<u>i</u>	с _б н ₅	OCH3
	<u>4a-i</u>	e	с ₆ н ₅	H			

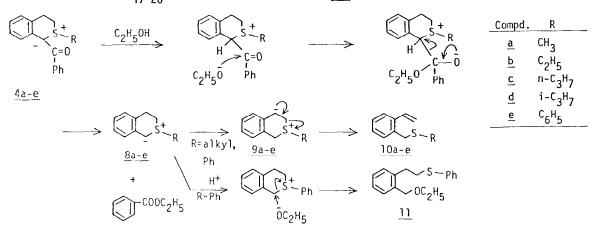
Thermal 1,4-Rearrangement of 2-Alkyl(or Aryl)-1-benzoyl-3,4-dihydro-2-thianaphthalenes


Refluxing ylide <u>4a</u> in dry toluene did not undergo the normal Stevens-type 1,2-rearrangement,^{4,9)} but did the 1,4-rearrangement to afford enol ether <u>5a</u> as a yellow oil. The structure was characterized by its IR spectrum (no carbonyl absorption band) and its NMR spectrum [δ 3.46 (3H, s, OCH₃)]. Similarly in dry xylene, ylide <u>4e</u> gave enol ether <u>5b</u>^{8,10)} as colorless needles. However, ylides <u>4b-d</u> were dealkylated to give <u>2a</u> on refluxing in dry benzene or dry toluene.


Table I: Thermal Rearrangement of 2-Alkyl(or Aryl)-l-benzoyl-3,4-dihydro-2-thianaphthalenes

Compd.	Solvent (Time:hr)	Product (Yield:%)		
<u>4a</u>	benzene (12) toluene (12)	<u>4a</u> (83.3) 5a (47.6)		
<u>4b</u>	benzene (12) toluene (12)	$\frac{\overline{2a}}{2a}$ (64.3)		
<u>4c</u>	benzene (12) toluene (3)	<u>4a</u> (83.3) <u>5a</u> (47.6) <u>2a</u> (64.3) <u>2a</u> (67.4) <u>2a</u> (76.9) <u>2a</u> (78.1)		
<u>4d</u>	benzene (4) toluene (2)	2a (85.2) 2a (88.5) 4e (85.4)		
<u>4e</u>	benzene (12) toluene (12) xylene (8)	4 <u>e</u> (85.4) 4 <u>e</u> (46.0), <u>5b</u> (14.0) 5 <u>b</u> (45.0)		

In order to elucidate the mechanism of the novel 1,4-rearrangement of S-substituent to the carbonyl oxygen atom, crossover experiments were performed. For the methyl group migration a mixture of 1-benzoyl-2-trideuteriomethyl-3,4-dihydro-2-thianaphthalene ($\underline{4f}$) and 1-(p-methoxy-benzoyl)-2-methyl-3,4-dihydro-2-thianaphthalene ($\underline{4h}$) was heated in dry toluene. Mass spectrum of the product showed four ion peaks at m/e 271, 298, 268, and 301, which were attributed to the molecular ion peaks of $\underline{5c}$, $\underline{5d}$, $\underline{5a}$, and $\underline{5e}$, respectively. This reaction produced two crossover products $\underline{5a}$ and $\underline{5e}$, and therefore this rearrangement proceeded intermolecularly.


On the other hand, a crossover reaction using S-aryl ylides, $\underline{4g}$ and $\underline{4i}$ were carried out for the l,4-rearrangement of the aryl group. Mass spectrum of the product exhibited two ion peaks at m/e 344 and 360, which were attributed to the molecular ion peaks of $\underline{5f}$ and $\underline{5g}$, respectively. The product did not contain crossover products and therefore this reaction is an intramolecular rearrangement.

The differences of thermal rearrangements between ylides 4a and 1-benzoyl-2-methyl-2-thianaphthalene ($\underline{6}$) can be explained by the stereochemical consideration on the rearranged products. 1,2-Shift of the methyl group of $\underline{4a}$ was prohibited by steric hindrance between an axial C_4 -H and an axial C_1 -methyl group, or between C_8 -H and an equatorial C_1 -methyl group in 1-benzoyl-1-methyl-2-thiochroman. Consequently the methyl group rearranged to the carbonyl oxygen atom. Steric crowdness between C_4 -H and the C_1 -methyl group was reduced in 1-benzoyl-1-methyl-2-thiochromene ($\underline{7}$), and therefore the substituent on sulfur atom of $\underline{6}$ migrated to the C_1 -position.

<u>Thermal Reactions of 2-Alkyl(or Aryl)-1-benzoyl-3,4-dihydro-2-thianaphthalenes</u>

Refluxing ylide <u>4a</u> in ethanol afforded methyl o-vinylbenzyl sulfide (<u>10a</u>) as a yellow oil together with ethyl benzoate. The structure of <u>10a</u> was elucidated by its NMR spectrum: δ 1.94 (3H, s, CH₃), 3.67(2H, s, CH₂), 5.28(1H, dd, J=1.4, 11.1Hz, olefinic H), 5.63(1H, dd, J=1.4, 17.4 Hz, olefinic H), 7.09(1H, dd, J=11.1, 17.4Hz, olefinic H) and high-resolution MS: m/e 164.0634 (Calcd for C₁₀H₁₂S, 164.0632). The sulfide <u>10a</u> was identified by comparing with the authentic sample prepared by treating dimethyl sulfoxide with o-vinylphenylmagnesium chloride. Under similar conditions, ylides <u>4b-d</u> gave <u>10b-d</u>, respectively. Similar treatment of ylides <u>4a-d</u> with methanol gave sulfides <u>10a-d</u> and methyl benzoate. The ylides <u>4a-d</u> would be protonated in ethanol to form the corresponding sulfonium salts, which would be attacked by ethoxide anion to afford eventually the ylide intermediate <u>8a-d</u> and ethyl benzoate. Ylides <u>8a-d</u> isomerized to <u>9a-d</u>, which underwent α ', β -elimInation to give sulfides <u>10a-d</u>. On the other hand, refluxing ylide <u>4e</u> in ethanol afforded phenyl o-vinylbenzyl sulfide (<u>10e</u>), ethyl benzoate, and o-(ethoxymethyl)phenethyl phenyl sulfide (<u>11</u>) as a colorless oil: NMR(CDCl₃) δ 1.19(3H, t, J=7.2Hz, CH₃), 2.90-3.25(4H, m, CH₂×2), 3.49(2H, q, J=7.2Hz, CH₂), 4.43(2H, s, CH₂), 7.10-7.53(9H, m, ArH); high-resolution MS m/e 272.1242 (Calcd for C₁₇H₂₀OS, 272.1242). The sulfide <u>10e</u> is considered to be produced via the

same route as that for <u>10a</u>, while <u>11</u> was formed by the protonation on C_1 -position of the ylide intermediate <u>8e</u>, the subsequent attack of ethoxide anion on C_1 -position and the cleavage of C-S bond.¹¹⁾ When the ylide <u>4a</u> was refluxed in t-butanol, o-(methylthioethyl)benzyl benzoate (<u>12</u>) was formed as a colorless oil: NMR(CDCl₃) δ 2.08(3H, s, CH₃), 2.55-3.35(4H, m, CH₂×2), 5.40(2H, s, CH₂), 7.20-7.60(7H, m, ArH); IR(neat) ν max cm⁻¹ 1715(C=0); high-resolution MS m/e 286.1008 (Calcd for $C_{17}H_{18}O_2S$, 286.1010). This result shows that the approach of t-butoxide anion to a carbonyl carbon atom was hindered because of its bulkiness, and therefore the attack of water contained in t-butanol prevailed.

Synthetic application of the reaction is under investigation.

Table II: Thermal Reactions of 2-Alkyl(or Aryl)-1-benzoyl-3,4-dihydro-2-thianaphthalenes

Compd.	Solvent (Time:hr)	Product (Yield:%)	-	
$ \begin{array}{r} 4a \\ \underline{4b} \\ \underline{4c} \\ \underline{4d} \\ \underline{4e} \\ \underline{4a} \\ \underline{4a} \\ \underline{4a} \\ \underline{4a} \end{array} $	ethanol (3) ethanol (3) ethanol (3) ethanol (3) ethanol (3) methanol (3) t-butanol (28)	$\begin{array}{c} 10a & (85.4) \\ 10b & (83.9) \\ 10c & (80.1) \\ 10d & (69.8), 2a & (10.5) \\ 10e & (67.2), 11 & (12.1) \\ 10a & (80.0) \\ 12 & (44.0) \end{array}$	S-CH3 0-C0-Ph <u>12</u>	

REFERENCES AND FOOTNOTES

- 1) a) K. W. Ratts and A. N. Yao, J. Org. Chem., <u>33</u>, 70 (1968).
 - b) A. Terabe and Y. Kishida, Chem. Pharm. Bull., <u>18</u>, 505 (1970).
- 2) a) U. Schöllkopf, G. Ostermann, und J. Schossig, Tetrahedron Lett., 1969, 2619.
 - b) idem, Liebigs Ann. Chem., <u>737</u>, 158 (1970).
- 3) H. Nozaki, K. Kondo, and M. Takaku, Tetrahedron Lett., 1965, 251.
- 4) M. Hori, T. Kataoka, H. Shimizu, K. Narita, S. Ohno, and H. Aoki, Chem. Lett., <u>1974</u>, 1101.
- 5) Another synthetic method has been reported. Y. Tamura, H. D. Choi, H. Shindo, J. Uenishi, and H. Ishibashi, Tetrahedron Lett., 22, 81 (1981).
- 6) Y. Oikawa and O. Yonemitsu, Tetrahedron, <u>30</u>, 2653 (1974).
- 7) J. V. Crivello and J. H. W. Lam, J. Org. Chem., <u>43</u>, 3055 (1978).
- 8) All new compounds reported here had satisfactory analytical data.
- Under similar conditions, 2-alkyl-1-benzoyl-2-thianaphthalenes gave 1-alkyl-1-benzoyl-2thiochromenes together with 1-benzoyl-2-thiochromene.
- 10) Enol ether <u>5</u> is more stable than <u>5</u> because of the steric hindrance between C_8 -H and $C_{2^{-}}$ -H.
- 11, 2-Diphenyl-2-thiochromenium perchlorate was ring-opened similarly.
 M.Hori, T. Kataoka, H. Shimizu, and S. Sugai, Chem. Pharm. Bull.
 (Tokyo), <u>22</u>, 2752 (1974).

Ph OR

(Received in Japan 4 July 1981)